metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(2-Carbamoylethyl-\kappa^2 C^1, O)$ triiodidotin(IV)

Geraldo M. de Lima,^a Edward R. T. Tiekink,^b* James L. Wardell^{a,c}[‡] and Solange M. S. V. Wardell^d

^aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte. MG, Brazil, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and ^dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland

Correspondence e-mail: edward.tiekink@gmail.com

Received 6 October 2011; accepted 10 October 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.008 Å; R factor = 0.027; wR factor = 0.079; data-to-parameter ratio = 27.1.

Two independent but virtually identical molecules comprise the asymmetric unit of the title compound, $[Sn(C_3H_6NO)I_3]$. The CI₃O coordination geometry around the Sn^{IV} atom is defined by a chelating carbamoylethyl ligand (C^1 , O-bidentate) and three I atoms, and is based on a distorted trigonal bipyramid with the carbonyl O atom occupying a position trans to one of the I atoms which forms the longer of the Sn-I bonds. The independent molecules are linked via N-H···O hydrogen bonds, which leads to the formation on an eightmembered amide $\{\cdots$ HNCO $\}_2$ synthon. N-H···I hydrogenbonding interactions are also present between neighbouring molecules.

Related literature

For background to and for related Sn[OCH(NH₂)CH₂CH₂]- Cl_3L structures (L = amide), see: Howie *et al.* (2011*a*,*b*); Wardell et al. (2010); Tiekink et al. (2006). For additional geometric analysis, see: Addison et al. (1984); Spek (2009).

Experimental

Crystal data

[Sn(C ₂ H ₆ NO)I ₂]	$\nu = 102.383 (1)^{\circ}$
$M_r = 571.48$	V = 1081.22 (2) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 7.8530 (1) Å	Mo $K\alpha$ radiation
b = 10.6264 (1) Å	$\mu = 10.87 \text{ mm}^{-1}$
c = 14.1250 (2) Å	T = 120 K
$\alpha = 98.801 \ (1)^{\circ}$	$0.20 \times 0.20 \times 0.02 \text{ mm}$
$\beta = 105.523 \ (1)^{\circ}$	

Data collection

Bruker-Nonius APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2007) $T_{\min} = 0.379, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	163 parameters
$wR(F^2) = 0.079$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 1.37 \text{ e } \text{\AA}^{-3}$
4414 reflections	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$

14061 measured reflections

 $R_{\rm int} = 0.039$

4414 independent reflections

4342 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Sn1-C1	2.146 (5)	Sn2-C4	2.147 (5)
Sn1-O1	2.347 (3)	Sn2-O2	2.330 (3)
Sn1-I1	2.6953 (4)	Sn2-I4	2.6987 (4)
Sn1-I2	2.7796 (4)	Sn2-I5	2.6880 (4)
Sn1-I3	2.6904 (4)	Sn2-I6	2.8060 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1n···O2	0.88	2.29	3.085 (7)	150
N2−H3n···O1	0.88	2.26	3.018 (7)	145
$N2-H4n\cdots I1$	0.88	3.06	3.784 (6)	141

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2541).

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2011*a*). Acta Cryst. E67, m1420-m1421.

Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011b). Z. Kristallogr. doi:10.1524/zkri.2011.1440.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973.
- Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m1536-m1537 [doi:10.1107/S1600536811041778]

(2-Carbamoylethyl- $\kappa^2 C^1$, 0)triiodidotin(IV)

G. M. de Lima, E. R. T. Tiekink, J. L. Wardell and S. M. S. V. Wardell

Comment

The title compound, (I), was studied as a continuation of structural investigations of 2-amidoethyl compounds of stannanes(IV) (Tiekink *et al.*, 2006; Wardell *et al.*, 2010; Howie *et al.*, 2011*a*,*b*, and references therein).

Two independent molecules comprise the asymmetric unit of (I), (Fig. 1). The two molecules are virtually identical with the r.m.s. deviations for distances and angles being 0.0132 Å and 3.291°, respectively (Spek, 2009). The greatest difference in equivalent bond lengths is found in the Sn1—I2 and Sn2—I6 bonds (Table 1). The Sn^{IV} atom in each molecule is chelated by the amidoethyl ligand and additionally coordinated by three I atoms. Each of the five-membered chelate rings is twisted, with the twist occurring about the CH₂—CH₂ bond in each case. The resulting CI₃O donor set defines a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal, with a leaning towards the latter description. This is quantified by the value of $\tau = 0.80$ [Sn1] which compares to the τ values of 0.0 and 1.0 for ideal square-pyramidal and trigonal-bipyramidal geometries, respectively (Addison *et al.*, 1984). The τ value for the Sn2 atom is 0.72. The disparity in the Sn—I bond lengths (Table 1), shows that the I atoms in the axial positions, each of which is *trans* to an O atom, form longer bonds than the I atoms occupying equatorial positions.

It is of interest that while (H₂NCOCH₂CH₂-*C*,*O*)SnCl₃ readily forms six-coordinate complexes, [(H₂NCOCH₂CH₂-*C*,*O*)SnCl₃.*L*] with oxygen ligands, *L*, *e.g.* L = amide, as illustrated by the isolation of [(H₂NCOCH₂CH₂-*C*,*O*)(EtCONH₂-*O*)SnCl₃] from reaction mixtures containing SnCl₂, HCl and H₂C=CHCONH₂ in Et₂O (Howie *et al.*, 2011*b*), the triiodido analogue is reluctant to form similar complexes. This is a consequence of the reduced Lewis acidity of the tin atom in iodidostannanes compared to chloridostannanes.

The two molecules comprising the asymmetric unit are linked *via* N—H···O hydrogen bonds, leading to the formation of an eight-membered {···HNCO}₂ synthon (Fig. 1, Table 2). The other H atom on each N forms an interaction with an I atom of the other molecule, in the the case of the N1—H2n atom, this distance is long at 3.14 Å.

Experimental

A solution of the complex, $(H_2NCOCH_2CH_2-C,O)(EtCONH_2-O)SnCl_3 (0.74 g, 2 mmol)$, isolated from a reaction mixture containing SnCl₂, HCl and H₂C=CHCONH₂ in Et₂O (Howie *et al.*, 2011*b*), and sodium iodide (10 mmol) in acetone (30 ml) was refluxed for 3 h, filtered to remove sodium chloride and rotary evaporated. The residue was extracted into chloroform (30 ml), the organic solution was rotary evaporated and the resulting residue was recrystallized from ethanol to give the title compound, melting point 461–463 K. IR: v(C=O) 1660, 1581 cm⁻¹.

Refinement

The C-bound H atoms were geometrically placed (N—H = 0.88 Å and C—H = 0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(N, C)$. The maximum and minimum residual electron density peaks of 1.37 and 1.46 e⁻ Å⁻³, respectively, are located 1.34 Å and 0.85 Å from the I5 and I3 atoms, respectively.

Figures

Fig. 1. The molecular structure of the two independent molecules comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The N—H···O hydrogen bonds are shown as dashed lines.

(2-Carbamoylethyl- $\kappa^2 C^1$, O)triiodidotin(IV)

Crystal data	
[Sn(C ₃ H ₆ NO)I ₃]	Z = 4
$M_r = 571.48$	F(000) = 992
Triclinic, PT	$D_{\rm x} = 3.511 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.8530 (1) Å	Cell parameters from 4411 reflections
b = 10.6264 (1) Å	$\theta = 2.9 - 27.5^{\circ}$
c = 14.1250 (2) Å	$\mu = 10.87 \text{ mm}^{-1}$
$\alpha = 98.801 (1)^{\circ}$	T = 120 K
$\beta = 105.523 \ (1)^{\circ}$	Plate, yellow
$\gamma = 102.383 (1)^{\circ}$	$0.20\times0.20\times0.02~mm$
V = 1081.22 (2) Å ³	

Data collection

Bruker–Nonius APEXII CCD diffractometer	4414 independent reflections
Radiation source: Bruker-Nonius FR591 rotating an- ode	4342 reflections with $I > 2\sigma(I)$
10cm confocal mirrors	$R_{\rm int} = 0.039$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007)	$k = -13 \rightarrow 13$
$T_{\min} = 0.379, T_{\max} = 1.000$	$l = -17 \rightarrow 17$
14061 measured reflections	

sup-2

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.079$	H-atom parameters constrained
<i>S</i> = 1.12	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0384P)^{2} + 3.8857P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4414 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
163 parameters	$\Delta \rho_{max} = 1.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotropi	c or e	auivalent	isotroi	nic dis	nlacement	narameters ($(Å^2$)
				0000000000		9000000000000	1001.01		p	peri erinerens i		/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.84744 (4)	0.81052 (3)	0.07941 (2)	0.01343 (9)
I1	0.79233 (5)	0.56511 (3)	0.11465 (2)	0.02019 (10)
I2	1.13298 (5)	0.80096 (3)	-0.00043 (3)	0.02164 (10)
13	0.58439 (4)	0.79311 (3)	-0.09302 (2)	0.01808 (9)
01	0.6302 (5)	0.8274 (4)	0.1636 (3)	0.0196 (7)
N1	0.5852 (8)	0.9523 (5)	0.2928 (4)	0.0324 (12)
H1N	0.4849	0.8870	0.2762	0.039*
H2N	0.6529	0.9568	0.3546	0.039*
C1	0.9830 (7)	0.9848 (5)	0.1974 (4)	0.0190 (10)
H1A	1.0707	0.9634	0.2533	0.023*
H1B	1.0533	1.0528	0.1714	0.023*
C2	0.8454 (9)	1.0397 (5)	0.2370 (4)	0.0266 (12)
H2A	0.9052	1.0874	0.3083	0.032*
H2B	0.8057	1.1037	0.1978	0.032*
C3	0.6791 (7)	0.9313 (5)	0.2296 (4)	0.0198 (10)
Sn2	0.27996 (4)	0.67003 (3)	0.46025 (2)	0.01266 (9)
I4	0.61233 (4)	0.84602 (3)	0.54333 (3)	0.01904 (10)
15	0.02318 (4)	0.80393 (3)	0.43118 (2)	0.01823 (9)

supplementary materials

I6	0.25104 (5)	0.60910 (3)	0.64270 (2)	0.02072 (10)
O2	0.3235 (5)	0.6994 (4)	0.3074 (3)	0.0208 (8)
N2	0.3498 (7)	0.5858 (5)	0.1668 (4)	0.0286 (11)
H3N	0.3856	0.6666	0.1585	0.034*
H4N	0.4401	0.5480	0.1716	0.034*
C4	0.2650 (7)	0.4737 (5)	0.3869 (4)	0.0171 (9)
H4A	0.3835	0.4533	0.4140	0.021*
H4B	0.1684	0.4090	0.4005	0.021*
C5	0.2215 (7)	0.4620 (5)	0.2734 (4)	0.0213 (11)
H5A	0.2708	0.3921	0.2449	0.026*
H5B	0.0868	0.4358	0.2414	0.026*
C6	0.3029 (7)	0.5905 (5)	0.2496 (4)	0.0188 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01254 (17)	0.01471 (17)	0.01161 (16)	0.00316 (13)	0.00254 (13)	0.00162 (12)
I1	0.02194 (19)	0.01739 (17)	0.02113 (18)	0.00547 (14)	0.00490 (14)	0.00694 (13)
I2	0.01880 (18)	0.02449 (18)	0.02683 (19)	0.00877 (14)	0.01201 (14)	0.00795 (14)
I3	0.01449 (17)	0.02295 (18)	0.01437 (17)	0.00462 (13)	0.00081 (13)	0.00423 (13)
O1	0.0162 (18)	0.0241 (18)	0.0176 (17)	0.0048 (14)	0.0059 (14)	0.0023 (14)
N1	0.044 (3)	0.027 (2)	0.032 (3)	0.009 (2)	0.025 (2)	-0.001 (2)
C1	0.021 (3)	0.013 (2)	0.016 (2)	-0.0025 (19)	0.001 (2)	-0.0023 (18)
C2	0.045 (4)	0.016 (2)	0.024 (3)	0.010 (2)	0.018 (3)	0.003 (2)
C3	0.025 (3)	0.026 (3)	0.016 (2)	0.014 (2)	0.011 (2)	0.008 (2)
Sn2	0.01234 (17)	0.01365 (16)	0.01193 (16)	0.00425 (12)	0.00339 (13)	0.00231 (12)
I4	0.01251 (17)	0.01815 (17)	0.02403 (18)	0.00266 (13)	0.00420 (13)	0.00230 (13)
15	0.01529 (18)	0.02042 (17)	0.02122 (18)	0.00887 (13)	0.00530 (13)	0.00606 (13)
16	0.01956 (18)	0.02811 (19)	0.01277 (16)	0.00340 (14)	0.00347 (13)	0.00657 (13)
O2	0.028 (2)	0.0208 (18)	0.0155 (17)	0.0060 (15)	0.0108 (15)	0.0032 (14)
N2	0.035 (3)	0.030 (3)	0.022 (2)	0.005 (2)	0.015 (2)	0.003 (2)
C4	0.022 (3)	0.013 (2)	0.013 (2)	0.0072 (19)	0.0009 (19)	0.0001 (17)
C5	0.022 (3)	0.021 (2)	0.016 (2)	0.002 (2)	0.004 (2)	-0.0031 (19)
C6	0.014 (2)	0.029 (3)	0.016 (2)	0.009 (2)	0.0047 (19)	0.006 (2)

Geometric parameters (Å, °)

Sn1—C1	2.146 (5)	Sn2—C4	2.147 (5)
Sn1—O1	2.347 (3)	Sn2—O2	2.330 (3)
Sn1—I1	2.6953 (4)	Sn2—I4	2.6987 (4)
Sn1—I2	2.7796 (4)	Sn2—I5	2.6880 (4)
Sn1—I3	2.6904 (4)	Sn2—I6	2.8060 (4)
O1—C3	1.244 (6)	O2—C6	1.262 (6)
N1—C3	1.324 (7)	N2—C6	1.313 (6)
N1—H1N	0.8800	N2—H3N	0.8800
N1—H2N	0.8800	N2—H4N	0.8800
C1—C2	1.521 (7)	C4—C5	1.526 (7)
C1—H1A	0.9900	C4—H4A	0.9900
C1—H1B	0.9900	C4—H4B	0.9900

C2—C3	1.512 (8)		С5—С6		1.506 (7)
C2—H2A	0.9900		С5—Н5А		0.9900
C2—H2B	0.9900		С5—Н5В		0.9900
C1—Sn1—O1	76.52 (16)		C4—Sn2—O2		77.38 (16)
C1—Sn1—I3	125.92 (14)		C4—Sn2—I5		129.25 (14)
O1—Sn1—I3	87.71 (9)		O2—Sn2—I5		89.69 (9)
C1—Sn1—I1	122.64 (14)		C4—Sn2—I4		118.64 (14)
O1—Sn1—I1	83.18 (9)		O2—Sn2—I4		84.58 (9)
I3—Sn1—I1	105.788 (15))	I5—Sn2—I4		108.400 (14)
C1—Sn1—I2	98.50 (14)		C4—Sn2—I6		96.42 (13)
O1—Sn1—I2	173.92 (9)		O2—Sn2—I6		172.63 (9)
I3—Sn1—I2	98.106 (14)		I5—Sn2—I6		97.373 (13)
I1—Sn1—I2	96.853 (14)		I4—Sn2—I6		95.120 (13)
C3—O1—Sn1	112.5 (3)		C6—O2—Sn2		111.5 (3)
C3—N1—H1N	109.5		C6—N2—H3N		109.5
C3—N1—H2N	109.5		C6—N2—H4N		109.5
H1N—N1—H2N	109.5		H3N—N2—H4N		109.5
C2—C1—Sn1	111.0 (4)		C5—C4—Sn2		110.1 (3)
C2—C1—H1A	109.4		С5—С4—Н4А		109.6
Sn1—C1—H1A	109.4		Sn2—C4—H4A		109.6
C2—C1—H1B	109.4		С5—С4—Н4В		109.6
Sn1—C1—H1B	109.4		Sn2—C4—H4B		109.6
H1A—C1—H1B	108.0		H4A—C4—H4B		108.1
C3—C2—C1	111.7 (4)		C6—C5—C4		111.5 (4)
C3—C2—H2A	109.3		С6—С5—Н5А		109.3
C1—C2—H2A	109.3		С4—С5—Н5А		109.3
С3—С2—Н2В	109.3		C6—C5—H5B		109.3
C1—C2—H2B	109.3		C4—C5—H5B		109.3
H2A—C2—H2B	107.9		H5A—C5—H5B		108.0
O1—C3—N1	121.5 (5)		O2—C6—N2		121.2 (5)
O1—C3—C2	120.3 (4)		O2—C6—C5		120.6 (4)
N1—C3—C2	118.2 (5)		N2-C6-C5		118.2 (5)
C1—Sn1—O1—C3	6.4 (4)		C4—Sn2—O2—C6		5.8 (3)
I3—Sn1—O1—C3	-121.4 (3)		I5—Sn2—O2—C6		-124.7 (3)
I1—Sn1—O1—C3	132.4 (3)		I4—Sn2—O2—C6		126.8 (3)
O1—Sn1—C1—C2	-19.9 (3)		O2—Sn2—C4—C5		-20.4 (3)
I3—Sn1—C1—C2	57.1 (4)		I5—Sn2—C4—C5		58.6 (4)
I1—Sn1—C1—C2	-92.5 (4)		I4—Sn2—C4—C5		-97.0 (3)
I2—Sn1—C1—C2	163.6 (3)		I6—Sn2—C4—C5		163.6 (3)
Sn1—C1—C2—C3	31.0 (6)		Sn2—C4—C5—C6		32.4 (5)
Sn1—O1—C3—N1	-172.4 (4)		Sn2—O2—C6—N2		-169.0 (4)
Sn1—O1—C3—C2	9.8 (6)		Sn2—O2—C6—C5		11.7 (6)
C1—C2—C3—O1	-27.7 (7)		C4—C5—C6—O2		-30.2 (7)
C1—C2—C3—N1	154.4 (5)		C4—C5—C6—N2		150.5 (5)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1n···O2		0.88	2.29	3.085 (7)	150

supplementary materials

N2—H3n···O1	0.88	2.26	3.018 (7)	145
N2—H4n…I1	0.88	3.06	3.784 (6)	141

Fig. 1

